- Діпанкар Саркар: Технолог та підприємець/
- Мої твори/
- NomNom: Революція в пошуку рецептів за допомогою RDF та графів знань/
NomNom: Революція в пошуку рецептів за допомогою RDF та графів знань
Зміст
У світі штучного інтелекту та обробки природної мови, що швидко розвивається, ми раді представити NomNom - передовий чатбот, який має на меті змінити спосіб пошуку та відкриття рецептів людьми. Використовуючи потужність Resource Description Framework (RDF) та графів знань, NomNom привносить новий рівень інтелекту в кулінарні дослідження.
Сила RDF у даних про рецепти #
В основі NomNom лежить надійний граф знань, побудований за допомогою RDF. Для тих, хто не знайомий, RDF - це стандартна модель для обміну даними в Інтернеті, яка особливо добре підходить для представлення складних, взаємопов’язаних даних, таких як рецепти. Ось чому RDF є революційним для даних про рецепти:
Гнучке представлення даних: RDF дозволяє нам представляти рецепти, інгредієнти, методи приготування та харчову інформацію дуже гнучким та розширюваним способом.
Семантичні відносини: За допомогою RDF ми можемо легко встановлювати та запитувати семантичні відносини між різними елементами рецепту, такими як заміна інгредієнтів або варіації методів приготування.
Інтероперабельність: Стандартизований формат RDF забезпечує легку інтеграцію наших даних про рецепти з іншими наборами даних та системами.
Масштабованість: По мірі зростання нашої бази даних рецептів, графова структура RDF дозволяє ефективно масштабувати та запитувати великі набори даних.
Побудова графа знань NomNom #
Наш граф знань є основою інтелекту NomNom. Ось як ми його будуємо:
Збір даних: Ми агрегуємо дані про рецепти з різних джерел, включаючи кулінарні книги, веб-сайти та користувацькі подання.
Розробка онтології: Ми створили власну онтологію, яка визначає класи та властивості, релевантні для кулінарної сфери, такі як інгредієнти, кулінарні техніки, дієтичні обмеження та смакові профілі.
Трансформація даних: Сирі дані про рецепти перетворюються на RDF-триплети, формуючи вузли та ребра нашого графа знань.
Збагачення: Ми покращуємо наш граф додатковими даними, такими як харчова інформація та культурне походження страв.
Обробка природної мови: Міст до запитів користувачів #
Здатність NomNom розуміти та відповідати на запити природною мовою - це те, що відрізняє його від інших. Ми використовуємо найсучасніші методи NLP для аналізу користувацького вводу та перетворення його на SPARQL-запити, які можна виконати на нашому RDF-графі знань. Цей процес включає:
Токенізація та розмітка частин мови: Розбиття запитів користувачів на окремі слова та визначення їх граматичних ролей.
Розпізнавання іменованих сутностей: Ідентифікація ключових сутностей у запиті, таких як інгредієнти, методи приготування або дієтичні обмеження.
Класифікація намірів: Визначення основної мети користувача (наприклад, пошук рецепту, отримання харчової інформації або вивчення кулінарної техніки).
Генерація запиту: Побудова SPARQL-запиту на основі проаналізованого та класифікованого вводу.
Користувацький досвід: Розмовне відкриття рецептів #
З NomNom користувачі можуть взаємодіяти з нашою величезною базою даних рецептів природним, розмовним способом. Наприклад:
- Користувач: “Я хочу вегетаріанську пасту з грибами.”
- NomNom: “Чудовий вибір! Я знайшов кілька вегетаріанських рецептів пасти з грибами. Ви віддаєте перевагу вершковому соусу чи томатному?”
Потім NomNom може запропонувати конкретні рецепти, запропонувати модифікації на основі дієтичних обмежень або уподобань, і навіть запропонувати поєднання з вином або гарніри.
Погляд у майбутнє: Майбутнє NomNom #
Продовжуючи розробку NomNom, ми з нетерпінням чекаємо на кілька майбутніх вдосконалень:
Персоналізація: Включення уподобань користувачів та минулих взаємодій для надання більш індивідуальних рекомендацій.
Мультимодальна взаємодія: Інтеграція розпізнавання зображень, щоб дозволити користувачам шукати рецепти на основі фотографій інгредієнтів або страв.
Інтеграція IoT: Підключення до розумних кухонних приладів для надання інструкцій з приготування в реальному часі.
Колаборативна фільтрація: Впровадження алгоритмів рекомендацій для пропонування рецептів на основі уподобань спільноти та тенденцій.
NomNom представляє значний крок вперед у застосуванні технологій семантичної мережі до повсякденних завдань. Поєднуючи потужність RDF, графів знань та обробки природної мови, ми створюємо інструмент, який не лише розуміє рецепти, але й справді осягає мистецтво та науку кулінарії.
Слідкуйте за оновленнями, оскільки ми продовжуємо вдосконалювати NomNom та розширювати межі кулінарних досліджень на основі ШІ!